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Local Context

e Saskatchewan suffered the highest
incidence of WNV in Canada in 2003 and
2007

e Saskatoon Health Region (SHR) reported
6.5% and 25% of the provincial cases in
2003 and 2007, respectively



Basic Transmission Cycle of the West Nile Virus Infected mosquitoes
transmit the virus to
birds. Birds of some
species get ill and
die, while others
become infected but
do not show signs
of the disease.
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Mosquito Environmental
Dependencies

For increasing their numbers:

 Temperature (Average number of night
temperatures above 152C; heat accumulated days)

e Habitat availability
e Rainfall



Human Dependencies

For using protective measures:

e Perceived risk
e Knowledge of WNV
* Temperature



Health Managers’ Dilemma

Need to make decisions now taking into account
uncertainties regarding:

1. Mosquito population
e abundance
e WNV prevalence

2. Environmental conditions
o current
e forecasted

3. Human behaviour



Different Levels of Challenge in

Dynamic Decision-Making
 Type A: Making complex dynamic choices given some
expected/typical course of important factors outside
our control

— Here, the focus is centred on building models that help us
understand the complex impact of our choices given this
‘expected course’

— Tough
 Type B: Making complex dynamic choices when we

can’t anticipate the course of the important factors
outside our control

— Focus on both dynamic model and adaptive planning given
uncertainty

— Tougher



Implications

 Type A: When important exogenous conditions are
known, we often seek to identify & stick to an
‘optimal’ pre-set plan
— Don’t have to worry much about unfolding external
conditions — they are known or unimportant



Decision making under dynamic
uncertainty: Adaptive Planning

The presentation focuses on this type
of “dynamic decision” problems

/

e Type B: Rather than putting “all our eggs in one basket”,
we typically seek to avoid a pre-set plan, and instead to
adaptively make choices over time

— What we will do over time will depend on what is
observed
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Adaptive Decision Problems: Relevant

Questions

How do we make decisions now, when the choice of
the best decision depends so much on what plays
out (unfolds) in things beyond our control?

— Temperature trends

— Precipitation

— Prevalence of infection in migratory bird populations

Should we make our decisions now despite these
uncertainties? Or should we wait to see how things
are trending before making decisions?



Characteristics of “Adaptive Decision”

Problems

Can’t count on one particular future trajectory
unfolding for things outside our control

Choosing decisions now requires considering the
different possibilities of what might unfold in the
future

We must make decisions over time, as we observe
things unfold

— The later we wait, the more information we’ll have

It may be advantageous to decide to “wait and see”
as to how things play out until a later decision paint



In these Conditions...

e What decision we make at a particular point in time will
depend on

e Qur current situation

e What we’ve observed as happening to this point (what we’ve “learned” —
e.g. recent levels of growth)

e State (as given by stocks & derived quantities)

e Possible future eventualities, in light of what we’ve already seen
(e.g. future levels of growth, given recent growth)

e Our possible decision points in the future

 Here, we are balancing two desires:

e To “seize the moment” and act early
e To “wait and see” what happens, and decide on the basis of this



A Hybrid System Architecture to
Address these “Tougher” Problems

Events & Decisions
€

Simulation

Decision Tree
Model Consequences

>
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Introduction to Decision Trees

e We will use decision trees both for

— Diagrammatically illustrating decision making
w/uncertainty

— Quantitative reasoning

* Represent
— Flow of time
— Decisions
— Uncertainties (via events)
— Consequences (deterministic or stochastic)



Decision Tree Nodes

Time

e Decision (choice) Node

Possibility 1

Possibility 2 _

 Chance (event) Node

Possibility 3 _

e Terminal (consequence) node



ldentifying the Optimal Decision Rule

* To select decision rules, we perform a
“rollback” of the tree (dynamic programming)
— For terminal nodes, pass up value

— For event nodes, pass up expected value of
children

— For decision nodes, select whichever child offers
highest value and pass up that value for this node



Example Tree
Feature Decision Making

New OS delayed
Rely on new OS features . < 1

New OS ships on time

< - <] 50000
Do not rely on new OS features
- <] 0

<] -200000




Best Option

New OS delayed

Rely on new OS features

7 84

Jl<| Rely on new OS features : $25,000

< |(5200,000): P=0.100

S,:S 000 i
DS ships on time
0.200

Do not rely on new OS features

<] |50

< |5$50,000: P=0.900




Extended Example

Ship without regression test Uncaught bugs in new OS release 4 2000000
against final release o 07 I
Feature support as expected
New OS delayed 93 S
/ 1 Wait for OS release for
Rely on new OS features regression test
' IS, N2 <] -200000

New OS ships on time

<] 50000

R
Do not rely on new OS features




Extended Rule

Ship without regression test Uncaught bugs in new OS release
against final release o (;‘ o 0.070 <] [(52,000,000)
233,000)],
— upport as expected

<] [(5100,000)

New OS delayed -
5 m; {J¢| Wait for OS release for regres... : (5200,000)| bt
Rely on new OS features regression test
/ {3¢]525,000 <] [(5200,000); P = 0.100
, New OS ships on time
Rely on new OS features : $25,000 o0 < |$50,000; P = 0.900

Do not rely on new OS features
<




Decision Rules

e Decision trees can be used to identify
“optimal” decision rules
— Remember: Optimality is in light of (simplified)
assumptions!

* A decision rule specify what we should do
given any possible eventuality



Decision Tree To Structure Policy Space
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Terminology

e A static decision rule pursues the same
predetermined decisions (actions) regardless of
eventualities

* An adaptive decision rule varies its decisions
(actions) based on which events have occurred

e Observation: Static decision rules are rarely
optimal



A Static Decision Rule
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An Adaptive Decision Rule
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Analysis Using Decision Trees

e Decision trees are a powerful analysis tool

e Addition of symbolic components to decision
trees greatly expand power
e Example analytic techniques

— Strategy selection
— One-way and multi-way sensitivity analyses

— Value of information



Decision Tree w/Variables

Slup without regression test Uncaugh! bUgS in new OS release {j .\
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pOSSupportSurprise
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Risk Preference
 People are not indifferent to uncertainty

— Lack of indifference from uncertainty arises from
uneven preferences for different outcomes

— E.g. someone may
e dislike losing Sx far more than gaining Sx
e value gaining Sx far more than they disvalue losing Sx.
e Individuals differ in comfort with uncertainty
pased on circumstances and preferences

e Risk averse individuals will pay “risk
premiums” to avoid uncertainty



Risk Preference
(Decision Tree Preview)

Loss

Gamble <1 51

- -

Gain

<] $1000000

n

Do not gamble




Categories of Risk Attitudes

e Risk attitude is a general way of classifying risk
preferences

e Classifications
— Risk averse fear loss and seek sureness
— Risk neutral are indifferent to uncertainty
— Risk lovers hope to “win big” and don’t mind
losing as much

e Risk attitudes change over
— Time
— Circumstance




Preference Function

 Formally expresses a particular party’s degree
of preference for (satisfaction with) different
outcomes (S, time, level of conflict, quality...)

e Can be systematically derived

e Used to identify best decision when have
uncertainty with respect to consequences

— Choice with the highest mean preference is the
best strategy for that particular party



Challenge:
ldentify these Preference Functions

e (On the Board)



Risk Attitude in Preference Fns

Utility
‘ Risk averter's
Risk averters |- — — = = = — — — ’
EU(X) Risk neutral's |- — - 4 Risk neutral's
Risk lover's . Risk lover's

T T » ﬁ
£5,000  £10,000 £15.000 < Y°




ldentifying Preference Functions

* Simple procedure to identify utility value
associated with multiple outcomes

* [nterpolation between these data points
defines the preference function

Certain Outcome

] Certainty Equivalent
. i <] Minimum Possible Outcome
Uncertain Outcome <1-L'tilir}'_ﬁ\f_cmir.r_-'_E,qui‘.‘zienr - -

<] Maximum Possible Outcome

Utility_for_Certzsinty_Equivalent



Notion of a Risk Premium

e Arisk premium is the amount paid by a (risk
averse) individual to avoid risk

e Risk premiums are very common — what are
some examples?

— lnsurance premiums

— Higher fees paid by owner to reputable
contractors

— Higher charges by contractor for risky work
— Lower returns from less risky investments

— Money paid to ensure flexibility as guard against
risk



Consider a risk averse individual with .
preference fn f faced with an investment c Certamty

that provides -
— 50% chance of earning $20000 E(:]Ulvalent

— 50% chance of earning SO Example
Average money from investment =

— .5*%$20,000+.5*S0=510000
Average satisfaction with the investment=

— .5*f($20,000)+.5*f($0)=.25 I
This individual would be willing to trade for /

a sure investment yielding satisfaction>.25 0
instead

— Can get .25 satisfaction for a sure f1(.25)=55000 £ -
* We call this the certainty equivalent to the .
investment
— Therefore this person should be willing to trade
this investment for a sure amt of money>$5000

i

& =1.035 — 1.035 g~ 00006768y

-3

$20,000
$30,000 —
$40,000

—$20,000

—$10,000 |~
o

$10,000

¥, profit

Figure 7.14. Utility function for profit.

$50,000 -



Example Cont’d (Risk Premium)

 The risk averse individual would be willing to
trade the uncertain investment c for any
certain return which is > $5000

e Equivalently, the risk averse individual would

be willing to pay another party an amount r
up to $5000 =S10000-55000 for other less risk
averse party to guarantee $10,000

— Assuming the other party is not risk averse, that
party wins because gain r on average

— The risk averse individual wins b/c more satisfied



Certainty Equivalent

More generally, consider situation in which have
— Uncertainty with respect to consequence ¢
— Non-linear preference function f
Note: E[X] is the mean (expected value) operator
The mean outcome of uncertain investment c is E[c]
— In example, this was .5*$20,000+.5*S0=510,000
The mean satisfaction with the investment is E[f(c)]
— In example, this was .5*f($20,000)+.5*f(S0)=.25
We call f1(E[f(c)]) the certainty equivalent of ¢

— Size of sure return that would give the same satisfaction as
C

— In example, was f1(.25)=f1(.5*20,000+.5*0)=55,000



Risk Attitude Redux

 The shapes of the preference functions means
can classify risk attitude by comparing the
certainty equivalent and expected value

— Forris
— Forris

— Forris

k loving individuals, fX(E[f(c)])>E[c]
k neutral individuals, f1(E[f(c)])=E[c]

k averse individuals, f1(E[f(c)])<E[c]



Motivations for a Risk Premium

e Consider

— Risk averse individual A for whom f1(E[f(c)])<E[c]
— Less risk averse party B

* A can lessen the effects of risk by paying a risk
premium r of up to E[c]-f*(E[f(c)]) to B in
return for a guarantee of E[c] income
— The risk premium shifts the risk to B

— The net investment gain for A is E[c]-r, but A is
more satisfied because E[c] — r > f1(E[f(c)])

— B gets average monetary gain of r



Multiple Attribute Decisions

* Frequently we care about multiple attributes
— Cost
— Time
— Quality
— Relationship with owner

 Terminal nodes on decision trees can capture
these factors — but still need to make different
attributes comparable



WNV Hybrid Approach
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The Hybrid Approach: Critical Points

Is a framework geared toward an ongoing process of
observation & decision making

Captures uncertainties as time progresses

Simulates a broad range of possibilities (e.g. for temperature)
and not just a single scenario

Allows for staging of decisions over different time points —
including decisions to “wait & see” (exploiting future options)

Could be used for diverse planning challenges (e.g. HIN1 given
uncertainty regarding public reaction, vaccine availability)



Responsibilities in the Hybrid
Approach

Simulation Model Decision Tree
e Calculates dynamic consequences of * Represents over time possible
a sequence over time of sequences of
e Events e Uncertainties (event nodes)
e Choices  Decisions (decision nodes)
e Takes care of deterministic simulation® Consequences (outcomes — e.g.
given events & decisions Cost, quality of life, etc.)

e Takes care of encapsulating
e Capturing all uncertainties
 “policy space” —where policies
are made over time
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Example: WNV Hybrid Approach

Simulation Model Decision Tree
Mosquito lifecycle (includes temperature * Decision options over time (source
effects) reduction, larvaciding, vaccination,
Bird lifecycle wait & see)
Transmission between mosquitos & bird * Uncertainties (temperature)
Human infection & disease progression * Consequences (all WNV cases, severe
Future: costs & resource use (via resource neurological cases, costs, etc.)

intensity weights, length
of stay), quality of life
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Decision Tree

Current temp = 15°C 1

Adulticiding =3

O .... same tree structure as the “do

nothing” branch Current temp = 20°C !

— <
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